628

Anomalies

This leaves us with an obvious follow-up question: Are theakventeractions anoma-
lous? Since th8U(2) ..k gauge group of the Standard Model only couples to left-hdnde
fields, it seems very dangerous. To answer this questioneed the generalization of the
above results to non-Abelian currents. But first we repeafctiiral anomaly calculation
using a different technique.

30.3 Chiral anomaly from the integral measure
|

In the previous section, we calculated the chiral anomaiguth Feynman diagrams. In
the massless case, this calculation was very subtle anld@ta careful choice of momen-
tum in a loop integral. A more direct connection between thensaly and the violation
of a symmetry uses the path integral. The intuitive idea, tdu€azuo Fujikawa, is that
anomalies arise when there are symmetries of the actiorateahot symmetries of the
functional measure in the path integral.

To begin, we quickly review the path-integral proof of cumreconservation in the
quantum theory from Section 14.5. We start with

(O(x1,...,1,)) = ﬁ/@iﬁ@wexp {i/d%iwaw}om,...,xn), (30.54)

whereO(z4,...,z,) is some gauge-invariant operator. For example, you cark thin
O = J*(y)J"(z). This action is invariant under the global symmetrigs— e
andy — e*#75¢). To derive current conservation for the vector symmetry,redefine
() — e @)q(x), with o now a function ofz. The measure is invariant under this
change of variables (we will confirm this in a moment) &, . . ., x,,) is invariant, but
Yy — b +ihyHpd . Since the path integral integrates over all field configares,

it is invariant under any field redefinition, thus the remagnterm proportional tex must
vanish. Expanding to first order inand integrating by parts, we find

0= Z%O]/dzlza(z)/l)lﬁl)wexp [i/dl"xiz{?aw} 82" {&(z)v“w(z)} O(xl,(?’c,)::;))

Since this holds for allv(z), we must have
Ou(JH"(x)O(21, ..., 2p)) = 0. (30.56)

The only part of the above derivation that changes when wesidenan axial rotation
¥ — (@759 is that the path integral measure is no longer invariant.

To see how the measure changes, consider a general lineafotraationsy(x) —
A(z)y(z) andy(z) — ¥(z)A.(z) which generates a Jacobian factor:

DYDY — [J. J|” DY Dyp. (30.57)

The Jacobiang/ = det A and J. = det A. appear to negative powers because the
transformed variables are fermionic (see Section 14.6jndke sense out of we write

J =det A =exp tr In A = exp [/ d*z (x| Trin A(z) |z) | , (30.58)
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where thesr sums over all the eigenvaluesafand theTr is a Dirac trace. For the sum over
positions, we have introduced a one-particle Hilbert sdaeg}.2 For example, consider a
non-chiral transformation with (z) = e**(*) andA.(z) = e~**(®), Then,

J =Tl =exp {4i/d4x54(x — ) oz(sr)} . (30.59)

where(z|y) = §*(z — y) has been used. Despite the infinitg0) factor, 7. 7 = 1 since
the integrand is real and so the measure is invariant. Inastnfor the axial transformation
Alz) = Ac(z) = #®7” and

J =J.=exp [z’/d4x§4(:c — ) ﬁ(l’)TI‘[’Y5]:| , (30.60)

Sinced*(0)Tr[ys] gives infinity times zeroJ. J is now undefined.
In full QED, the situation is similar. The QED path integral i

/ Dy Dy DA exp {z / d*z (iFi HJ)W)] . (30.61)

The action is still invariant under the global symmetries+ €'y andy — e*#754) with
A, unchanged. Under the local axial transformatidp,is invariant, so its transformation
does not contribute to the Jacobian.

To regulate the undefined product in Eqg. (30.60), let us firgew/ as:

J = exp (z / d4xﬂ[<x5(az)75|m>]>, (30.62)

Now, we regulate the divergence ina gaugg—invariant mabmyetroducing an exponential
regulator of the formexp(—112/A?), wherell = p — eA(%), A is some UV cutoff ang
is the operator conjugate toin the one-particle Hilbert space. The relatilfiﬁ = DZ +
§F,0t, from Eqg. (10.106), implies

2 =12 - gaWFW (#), (30.63)
so that

Te{(w]3(@)7°|e)] = Jim Tr[(]8 () 77"/ )]

5 (ﬁ - eA(jj))2 - %U;U/F'uy
¥ exp 1

|z).
(30.64)

All_rgo B(x){x|Tr

Now, the trace of a product af-matrices with one/® vanishes unless there are at least
four y-matrices in the product. Thus, the leading term in the egjoenof the exponential

2 To interpret this expression, we do not need a physicalpnegation of the one-particle Hilbert space — we
just want to use the mathematical tricks we learned in quantuohamecs to write the sum over positions in
a suggestive form. There is in fact a beautiful interpretatibone-particle Hilbert spaces like this in quantum
field theory, to which much of Chapter 33 is devoted.
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is of order4z. Using the identity; { o, 0*F } = gr@g"P1 — g grP 1 4iy el where
1 is the identity matrix with Dirac indices, we can derive that

(0 F)? = 2F2,1 + iy° e P, Fopg, (30.65)
which leads to
Tr[(x|iB(#)7°|x)]
62 va . 1 5—eA)2 /A2 1
= G A Fy(0) Fap (o) Jim | (ale<" ) 1 0 1)
(30.66)

To extract the contribution leading i) we can setd = 0 in the exponent. Next insert
1= (2m)~* [ d*k|k)(k| with p|k) = k|k) to get

1 2 A2 1 d*k 2,50 ) d*k 2 /A2 )
—(g|eP /A = — RE/AT 2 E o—kp/A® —
A4<x|e |) A / (27‘_)46 A4/(27r)46 62 (30.67)
Thus, we find a finite answer ds— oo:
N 62 ro
J =exp {—z/d‘lm (B(a:)w&” ﬁFpJ@ExB(@)} . (30.68)

Note that, if we had used—?"/A* or e~1"/A”  the singularity would not have been
regulated and the Jacobian would still be undefined.
The result is that under an axial transformation

/ D1 DYy DA exp [z / d*z EQED}

2
— / Dy Dty DA exp [z / d*x (LQED — J30,8 + Blgﬁel‘”"‘ﬁFMDFaﬁ)] . (30.69)

Thus, the Schwinger—Dyson equation in Eq. (30.56) becomes

2
0 (T (2)O(z1, .. x0)) = —1272<5“"°‘ﬁFW(JU)Faﬂ(a:)O(x1, .., 7n)). (30.70)
s
We often abbreviate this with
2
OpJs = — B E, Fog, (30.71)

1672
which agrees with Eq. (30.22). This equation confirms therpretation of the chiral
anomaly as due to non-invariance of the path integral measur
Since this derivation did not appear to use perturbatioorthé seems to imply that the
anomaly equation, Eq. (30.71), is exact. Indeed, the ceimius correct:

The chiral anomaly is 1-loop exact.

But the logic is flawed. In fact, the path integral transfotimaamounts to a 1-loop com-
putation, as can be seen from Eq. (30.67) or by restoringifacif /. (the correspondence
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between functional determinants and loops will be explane@hapters 33 and 34). Thus,

a more accurate statementbecause the anomaly is exact at 1-loop, the measure trans-
formation gives the correct answer. The 1-loop exactneskseothiral anomaly was first
proposed by Adler and Bell using diagrammatic argumergantist satisfying proof uses
topological arguments (see for example [Nakahara, 200B8¥emberg, 1996] for details).

30.4 Gauge anomalies in the Standard Model
I

In this section, we will check that the currents associati#d the SU(3)qcp % SU(2)weak ¥
U(1)y gauge symmetries of the Standard Model are non-anomafaus write these three
currents ag/ 2P, J¥*and.J), then we have to show thay,(.J/ J%.J.) = 0 for j, k, 1 any
of the forces. This is easiest to do by reading charges or alyoooefficients from the
triangle diagrams.

When all three currents involved are associated Wittl)y, we call the putative
anomaly theU(1)3, anomaly. It is easy to check that this vanishes. As we saw in
Eqg. (30.53), left-handed Weyl fermions and right-handegMérmions contribute to the
anomaly with opposite signs. Therefore, we have

12

B, = (Z -3 Yf) Sg?gwﬁBwBaﬁ, (30.72)
left

right
whereB,,, is the field strength fotJ(1)y-. The vanishing of théJ(1)3. anomaly requires
0=(2v7 - Y} -Y?) +3(2Y5 - Y - V7). (30.73)

Here,Y,Y.,Y,, Yy, Y, andYy are the hypercharges for the left-handed leptons, the-right
handed electrons (or muon or tauon), the right-handed inest{assuming they exist),
the left-handed quarks, the right-handed up-type quarlistlas right-handed down-type
quarks, respectively. As derived in Chapter 29, these elsaae (see Table 29.1)

YL:—%, Y.=-1, Y, =0, YQ:é, Yu:g Yd:—l. (30.74)
Plugging in to Eq. (30.73), we find that the anomaly in factishas. Note that the anomaly
would vanish for any number of generations, but that it dag#svanish for the quarks or
leptons alone.

By the way, one can also trivially check that tti¢1)3,,; anomaly vanishes in QED. In
QED, all the left- and right-handed charged particles ama®iand hence have the same
charges (QED is non-chiral). Thus, in QED;,.¢, Q} = >, Q% That theU(1)3y,
anomaly vanishes also follows from the vanishing of anoesdh the electroweak theory,
which we have nearly shown.



