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This leaves us with an obvious follow-up question: Are the weak interactions anoma-
lous? Since theSU(2)weak gauge group of the Standard Model only couples to left-handed
fields, it seems very dangerous. To answer this question, we need the generalization of the
above results to non-Abelian currents. But first we repeat the chiral anomaly calculation
using a different technique.

30.3 Chiral anomaly from the integral measure

In the previous section, we calculated the chiral anomaly through Feynman diagrams. In
the massless case, this calculation was very subtle and involved a careful choice of momen-
tum in a loop integral. A more direct connection between the anomaly and the violation
of a symmetry uses the path integral. The intuitive idea, dueto Kazuo Fujikawa, is that
anomalies arise when there are symmetries of the action thatare not symmetries of the
functional measure in the path integral.

To begin, we quickly review the path-integral proof of current conservation in the
quantum theory from Section 14.5. We start with

〈O(x1, . . . , xn)〉 =
1

Z[0]

∫

Dψ̄Dψ exp

[

i

∫

d4x iψ̄ /∂ψ

]

O(x1, . . . , xn), (30.54)

whereO(x1, . . . , xn) is some gauge-invariant operator. For example, you can think of
O = Jµ(y)Jν(z). This action is invariant under the global symmetriesψ → eiαψ

andψ → eiβγ5ψ. To derive current conservation for the vector symmetry, weredefine
ψ(x) → eiα(x)ψ(x), with α now a function ofx. The measure is invariant under this
change of variables (we will confirm this in a moment) andO(x1, . . . , xn) is invariant, but
ψ̄ /∂ψ → ψ̄ /∂ψ+ i ψ̄γµψ∂µα. Since the path integral integrates over all field configurations,
it is invariant under any field redefinition, thus the remaining term proportional toα must
vanish. Expanding to first order inα and integrating by parts, we find

0 =
1

Z[0]

∫

d4z α(z)

∫

Dψ̄Dψ exp

[

i

∫

d4x iψ̄ /∂ψ

]

∂

∂zµ

[

ψ̄(z)γµψ(z)
]

O(x1, . . . , xn) .

(30.55)
Since this holds for allα(z), we must have

∂µ〈J
µ(x)O(x1, . . . , xn)〉 = 0. (30.56)

The only part of the above derivation that changes when we consider an axial rotation
ψ → eiβ(x)γ5ψ is that the path integral measure is no longer invariant.

To see how the measure changes, consider a general linear transformationψ(x) →

∆(x)ψ(x) andψ̄(x) → ψ̄(x)∆c(x) which generates a Jacobian factor:

Dψ̄Dψ → [Jc J ]
−1

Dψ̄Dψ. (30.57)

The JacobiansJ = det∆ andJc = det∆c appear to negative powers because the
transformed variables are fermionic (see Section 14.6). Tomake sense out ofJ we write

J = det∆ = exp tr ln∆ = exp

[∫

d4x 〈x|Tr ln∆(x) |x〉

]

, (30.58)
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where thetr sums over all the eigenvalues of∆ and theTr is a Dirac trace. For the sum over
positions, we have introduced a one-particle Hilbert space{|x〉}.2 For example, consider a
non-chiral transformation with∆(x) = eiα(x) and∆c(x) = e−iα(x). Then,

J = J †
c = exp

[

4i

∫

d4xδ4(x− x)α(x)

]

. (30.59)

where〈x|y〉 = δ4(x− y) has been used. Despite the infiniteδ4(0) factor,Jc J = 1 since
the integrand is real and so the measure is invariant. In contrast, for the axial transformation
∆(x) = ∆c(x) = eiβ(x)γ

5

and

J = Jc = exp

[

i

∫

d4xδ4(x− x)β(x)Tr[γ5]

]

, (30.60)

Sinceδ4(0)Tr[γ5] gives infinity times zero,Jc J is now undefined.
In full QED, the situation is similar. The QED path integral is

∫

Dψ̄DψDA exp

[

i

∫

d4x

(

−
1

4
F 2
µν + iψ̄ /Dψ

)]

. (30.61)

The action is still invariant under the global symmetriesψ → eiαψ andψ → eiβγ5ψ with
Aµ unchanged. Under the local axial transformation,Aµ is invariant, so its transformation
does not contribute to the Jacobian.

To regulate the undefined product in Eq. (30.60), let us first writeJ as:

J = exp

(

i

∫

d4xTr[〈x|β(x̂)γ5|x〉]

)

, (30.62)

Now, we regulate the divergence in a gauge-invariant mannerby introducing an exponential

regulator of the formexp(− /̂Π2/Λ2), where /̂Π = /̂p − e /A(x̂), Λ is some UV cutoff and̂p
is the operator conjugate tôx in the one-particle Hilbert space. The relation/D

2
= D2

µ +
e
2Fµνσ

µν , from Eq. (10.106), implies

/̂Π2 = Π̂2 −
e

2
σµνF

µν (x̂) , (30.63)

so that

Tr[〈x|β(x̂)γ5|x〉] = lim
Λ→∞

Tr
[

〈x|β (x̂) γ5e /̂Π
2/Λ2

|x〉
]

= lim
Λ→∞

β(x)〈x|Tr

[

γ5 exp

(

(p̂− eA(x̂))
2
− e

2σµνF
µν

Λ2

)]

|x〉.

(30.64)

Now, the trace of a product ofγ-matrices with oneγ5 vanishes unless there are at least
four γ-matrices in the product. Thus, the leading term in the expansion of the exponential

2 To interpret this expression, we do not need a physical interpretation of the one-particle Hilbert space – we
just want to use the mathematical tricks we learned in quantum mechanics to write the sum over positions in
a suggestive form. There is in fact a beautiful interpretation of one-particle Hilbert spaces like this in quantum
field theory, to which much of Chapter 33 is devoted.
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is of order 1
Λ4 . Using the identity12

{

σµν , σαβ
}

= gµαgνβ1−gναgµβ1+iγ5εµναβ , where
1 is the identity matrix with Dirac indices, we can derive that

(σµνF
µν)

2
= 2F 2

µν1+ iγ5εµναβFµνFαβ , (30.65)

which leads to

Tr[
〈

x|iβ(x̂)γ5|x
〉

]

= −
e2

2
β(x)εµναβFµν(x)Fαβ(x) lim

Λ→∞

[

1

Λ4
〈x|e(p̂−eA)2/Λ2

|x〉+O

(

1

Λ5

)]

.

(30.66)

To extract the contribution leading ine, we can setA = 0 in the exponent. Next insert
1 = (2π)−4

∫

d4k|k〉〈k| with p̂|k〉 = k|k〉 to get

1

Λ4
〈x|ep̂

2/Λ2

|x〉 =
1

Λ4

∫

d4k

(2π)4
ek

2/Λ2

=
i

Λ4

∫

d4kE
(2π)4

e−k2

E
/Λ2

=
i

16π2
. (30.67)

Thus, we find a finite answer asΛ → ∞:

J = exp

[

−i

∫

d4x

(

β(x)
e2

32π2
εµναβFµν(x)Fαβ(x)

)]

. (30.68)

Note that, if we had usede−p̂2/Λ2

or e−Π2/Λ2

, the singularity would not have been
regulated and the Jacobian would still be undefined.

The result is that under an axial transformation
∫

Dψ̄DψDA exp

[

i

∫

d4xLQED

]

→

∫

Dψ̄DψDA exp

[

i

∫

d4x

(

LQED − J5
µ∂µβ + β

e2

16π2
εµναβFµνFαβ

)]

. (30.69)

Thus, the Schwinger–Dyson equation in Eq. (30.56) becomes

∂µ〈J
5µ(x)O(x1, . . . , xn)〉 = −

e2

16π2
〈εµναβFµν(x)Fαβ(x)O(x1, . . . , xn)〉. (30.70)

We often abbreviate this with

∂µJ
5
µ = −

e2

16π2
εµναβFµνFαβ , (30.71)

which agrees with Eq. (30.22). This equation confirms the interpretation of the chiral
anomaly as due to non-invariance of the path integral measure.

Since this derivation did not appear to use perturbation theory, it seems to imply that the
anomaly equation, Eq. (30.71), is exact. Indeed, the conclusion is correct:

The chiral anomaly is 1-loop exact.

But the logic is flawed. In fact, the path integral transformation amounts to a 1-loop com-
putation, as can be seen from Eq. (30.67) or by restoring factors of~ (the correspondence
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between functional determinants and loops will be exploredin Chapters 33 and 34). Thus,
a more accurate statement isbecause the anomaly is exact at 1-loop, the measure trans-
formation gives the correct answer. The 1-loop exactness ofthe chiral anomaly was first
proposed by Adler and Bell using diagrammatic arguments. Its most satisfying proof uses
topological arguments (see for example [Nakahara, 2003] or[Weinberg, 1996] for details).

30.4 Gauge anomalies in the Standard Model

In this section, we will check that the currents associated with theSU(3)QCD×SU(2)weak×

U(1)Y gauge symmetries of the Standard Model are non-anomalous. If we write these three
currents asJQCD

µ , Jweak
µ andJY

µ , then we have to show that∂µ〈Jj
µJ

k
αJ

l
ν〉 = 0 for j, k, l any

of the forces. This is easiest to do by reading charges or anomaly coefficients from the
triangle diagrams.

When all three currents involved are associated withU(1)Y , we call the putative
anomaly theU(1)3Y anomaly. It is easy to check that this vanishes. As we saw in
Eq. (30.53), left-handed Weyl fermions and right-handed Weyl fermions contribute to the
anomaly with opposite signs. Therefore, we have

∂µJ
µ
Y =





∑

left

Y 3
l −

∑

right

Y 3
r





g′2

32π2
εµναβBµνBαβ , (30.72)

whereBµν is the field strength forU(1)Y . The vanishing of theU(1)3Y anomaly requires

0 =
(

2Y 3
L − Y 3

e − Y 3
ν

)

+ 3
(

2Y 3
Q − Y 3

u − Y 3
d

)

. (30.73)

Here,YL, Ye, Yν , YQ, Yu andYd are the hypercharges for the left-handed leptons, the right-
handed electrons (or muon or tauon), the right-handed neutrinos (assuming they exist),
the left-handed quarks, the right-handed up-type quarks and the right-handed down-type
quarks, respectively. As derived in Chapter 29, these charges are (see Table 29.1)

YL = −
1

2
, Ye = −1, Yν = 0, YQ =

1

6
, Yu =

2

3
, Yd = −

1

3
. (30.74)

Plugging in to Eq. (30.73), we find that the anomaly in fact vanishes. Note that the anomaly
would vanish for any number of generations, but that it does not vanish for the quarks or
leptons alone.

By the way, one can also trivially check that theU(1)3EM anomaly vanishes in QED. In
QED, all the left- and right-handed charged particles are Dirac, and hence have the same
charges (QED is non-chiral). Thus, in QED,

∑

leftQ
3
L =

∑

rightQ
3
R. That theU(1)3EM

anomaly vanishes also follows from the vanishing of anomalies in the electroweak theory,
which we have nearly shown.


