
Effective actions and Schwinger
proper time 33

We have mentioned effective actions a few times already. Forexample, the effective action
for the 4-Fermi theory is derived from the Standard Model byintegrating out theW andZ
bosons. It is aneffective action since it is valid only in some regime, in this case for energies
less thanmW . More generally, an effective action is one that gives the same results as a
given action but has different degrees of freedom. For the 4-Fermi theory, the effective
action does not have theW andZ bosons. In this chapter we will develop powerful tools to
calculate effective actions more generally. We will discuss three ways to calculate effective
actions: through matching (or the operator product expansion), through field-dependent
expectation values using Schwinger proper time, and with functional determinants coming
from Feynman path integrals.

The first step is to define what we mean by an effective action. The termeffective action,
denoted byΓ, generally refers to a functional of fields (like any action)defined to give the
same Green’s functions andS-matrix elements as a given actionS, which is often called the
action for thefull theory . We writeΓ =

∫
d4xLeff(x), whereLeff is called theeffective

Lagrangian. Differences betweenΓ andS include thatΓ often has fewer fields, is non-
renormalizable, and only has a limited range of validity. When a field is in the full theory
but not in the effective action, we say it has beenintegrated out.

The advantage of using effective actions over full theory actions is that by focusing only
on the relevant degrees of freedom for a given problem calculations are often easier. For
example, in Section 31.3 we saw that in the 4-Fermi theory large logarithmic corrections
to b → cd̄u decays of the formαn

s lnnmW

mb
could be summed to all orders in perturbation

theory. The analogous calculation in the full Standard Model would have been a nightmare.
The effective action we will focus on for the majority of thischapter is the one arising

from integrating out a fermion of massm in QED. We can define this effective action
Γ[Aµ] by

∫
DA exp(iΓ[Aµ]) ≡

∫
DADψ̄Dψ exp

[
i

∫
d4x

(
−1

4
F 2
µν + ψ̄

(
i /D −m

)
ψ

)]
.

(33.1)

WhenAµ corresponds to a constant electromagnetic field,Leff [A] is called the Euler–
Heisenberg Lagrangian. The Euler–Heisenberg Lagrangian is amazing: it gives us the
QED β-function, Schwinger pair creation, scalar and pseudoscalar decay rates, the chiral
anomaly, and the low-energy limit for scatteringn photons, including the light-by-
light scattering cross section. As we will see, the Euler–Heisenberg Lagrangian can be
calculated to all orders inαe using techniques from non-relativistic quantum mechanics.
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704 Effective actions and Schwinger proper time

33.1 Effective actions from matching

So far, we have only discussed how effective actions can be calculated through matching.
This approach requires that matrix elements of states agreein the full and effective theories.
For example, in the 4-Fermi theory, we asked that

〈Ω|T
{
ψ̄ψψ̄ψ

}
|Ω〉S = 〈Ω|T

{
ψ̄ψψ̄ψ

}
|Ω〉Γ, (33.2)

where the subscript on the correlation function indicates the action used to calculate it.
Writing the effective Lagrangian as a sum over operatorsLeff(x) =

∑
CiOi(x) we were

able to determine the Wilson coefficientsCi by asking that Eq. (33.2) hold order-by-order
in perturbation theory. One-loop matching in the 4-Fermi theory was discussed in Sec-
tion 31.3. Other examples of matching that we considered include the Chiral Lagrangian
(Section 28.2.2) and deep inelastic scattering (Section 32.4).

In the 4-Fermi theory and for deep inelastic scattering, we matched by expanding prop-
agators 1

p2−m2
W

or 1
p2+Q2 respectively (see Eqs. (32.70) and (32.71)). The reason onecan

expand propagators to derive an effective Lagrangian is because when a scale such asmW

or Q is taken large, the propagator can only propagate over a small distance. In terms of
Feynman diagrams, we expand an exchange graph in a set of local interactions:

ψ1

ψ4ψ2

ψ3

→
ψ1

ψ4ψ2

ψ3

. (33.3)

To see how this works in position space, consider matching a Yukawa theory with a massive
scalar,

LY = iψ̄ /∂ψ − 1

2
φ(�+m2)φ+ λφψ̄ψ, (33.4)

to an effective LagrangianLeff which lacks that scalar and is useful for energies much
less thanm. For largem, fluctuations ofφ around its classical configuration are highly
suppressed. Thus, to leading order we can assumeφ satisfies its classical equations of
motion,φ = λ

�+m2 ψ̄ψ, and that loops ofφ are small corrections. Plugging the classical
solution back into the Lagrangian gives

Leff = iψ̄ /∂ψ +
λ2

2
ψ̄ψ

1

�+m2
ψ̄ψ. (33.5)

In this wayLeff is guaranteed to give the same correlation functions asLY but has noφ
field in it. As long asm is larger than typical momentum scales, we can also Taylor expand
this non-local effective Lagrangian in a series of local operators:

Leff = iψ̄ /∂ψ +
λ2

2m2
ψ̄ψψ̄ψ − λ2

2m4
ψ̄ψ�ψ̄ψ + · · · . (33.6)

If φ were theW andZ, this would give the 4-Fermi theory supplemented by additional
operators that have effects suppressed by powers ofE2

m2
W

at low energy.
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Settingφ to its classical equations of motion amounts to taking the steepest descent
approximation in the path integral. To integrate outφ to all orders, we have to perform the
path integral exactly. Thus, we can define the effective action as
∫

Dψ̄Dψ exp

(
i

∫
d4xLeff [ψ, ψ̄]

)
=

∫
DφDψ̄Dψ exp

(
i

∫
d4xLY[φ, ψ, ψ̄]

)
,

(33.7)
which connects back to the definition given in Eq. (33.1).

33.2 Effective actions from Schwinger
proper time

The next method we discuss for computing effective actions is through Schwinger proper
time. The idea here is to evaluate the propagator for the particle we want to integrate out
as a functional of the other fields. Pictorially, we can writethis as

GA(x, y) = + + + · · · . (33.8)

Then, when we integrate out the field, we will generate an infinite set of interactions among
the other fields.

The key to Schwinger’s proper-time formalism is the mathematical identity

i

A+ iε
=

∫ ∞

0

ds eis(A+iε), (33.9)

which holds forA ∈ R and ε > 0 (see Appendix B). This lets us write the Feynman
propagator for a scalar as

DF (x, y) =

∫
d4p

(2π)4
eip(x−y) i

p2 −m2 + iε

=

∫
d4p

(2π)4
eip(x−y)

∫ ∞

0

ds eis (p
2−m2+iε). (33.10)

The integral overd4p is Gaussian and can be done exactly using Eq. (14.7) withA =

−2isgµν , giving

DF (x, y) =
−i
16π2

∫ ∞

0

ds

s2
e
−i

[

(x−y)2

4s +sm2−iεs

]

, (33.11)

which is an occasionally useful representation of the propagator. Form = 0 it provides a
shortcut to the position-space Feynman propagatorDF (x, y) = − 1

4π2
1

(x−y)2−iε
.

An alternative to performing the integral overp directly is first to introduce a one-particle
Hilbert space spanned by|x〉, as in non-relativistic quantum mechanics. This lets us write
〈p|x〉 = eipx. Then, from Eq. (33.10) we get
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DF (x, y) =

∫
d4p

(2π)4
〈y|p〉

∫ ∞

0

ds eis(p
2−m2+iε)〈p|x〉. (33.12)

The analogy with quantum mechanics can be taken even further. Introduce momentum
operatorŝpµ with p̂µ|p〉 = pµ|p〉 and defineĤ = −p̂2. Theneisp

2〈p|x〉 = 〈p|e−isĤ |x〉.
This lets us use(2π)−4 ∫

d4p |p〉〈p| = 1 in Eq. (33.12) to get

DF (x, y) =

∫ ∞

0

ds e−sεe−ism2〈y|e−isĤ |x〉 ≡
∫ ∞

0

ds e−sεe−ism2〈y; 0|x; s〉, (33.13)

where|x; s〉 ≡ e−isĤ |x〉. In the second step, we have interpretedĤ as a Hamiltonian and
s as a time variable known asSchwinger proper time.1 Schwinger proper time gives an
intuitive interpretation of a propagator:

A propagator is the amplitude for a particle to propagate from x to y in proper times,
integrated overs.

One has to be careful interpretinĝH however, since it conventionally includes only thep
dependence and not them dependence (aŝH = m2 − p̂2 would).

We can go even further into quantum mechanics by defining the Green’s function as an
operator matrix element. Define the Green’s function operator for a massive scalar as

Ĝ ≡ i

p̂2 −m2 + iε
. (33.14)

Then the Feynman propagator is

DF (x, y) =

∫
d4p

(2π)4
eip(x−y) i

p2 −m2 + iε
=

∫
d4p

(2π)4
〈y|p〉〈p| i

p̂2 −m2 + iε
|x〉

= 〈y|Ĝ|x〉. (33.15)

Or we can go directly to proper time, without ever introducing the p integral, through
Eq. (33.9):

DF (x, y) = 〈y|Ĝ|x〉 =
∫ ∞

0

ds e−sεe−ism2〈y|e−iĤs|x〉, (33.16)

whereĤ = −p̂2 as before.
By the way, when you have two propagators, as in a loop, the relevant identity is

1

AB
= −

∫ ∞

0

ds

∫ ∞

0

dt eisA+itB (33.17)

(theiε factors are implicit). If we then writes = xτ andt = (1− x)τ , so thats andt are
the fractionsx and(1− x) of the total proper timeτ , this becomes

1

AB
= −

∫ 1

0

dx

∫ ∞

0

τ dτ eiτ(xA+(1−x)B) =

∫ 1

0

dx
1

[Ax+B (1− x)]2
, (33.18)

1 To understand whys is called a proper time, recall from relativity that proper times is defined by the differ-
entialds2 = gµνdx

µdxν . SinceĤ = −gµν p̂
µp̂ν , it naturally generates translations in proper time through

gµν ∂
∂xµ

∂
∂xν .



33.2 Effective actions from Schwinger proper time 707

which is a Feynman parameter integral. Thus, in a loop, each particle has its own proper
time, s or t, which denote how long each particle has taken to get around its part of the
loop. Then the Feynman parameterx = s

s+t is how far one particle is behind the other one.

33.2.1 Background fields

Now suppose a fieldφ interacts with a photon field, through the usual scalar QED
Lagrangian:

L = −1

4
F 2
µν − φ⋆

(
D2 +m2

)
φ, (33.19)

with Dµ = ∂µ + ieAµ. As a step towards calculating the Euler–Heisenberg Lagrangian,
we will need the scalar propagator in the presence of a fixed externalAµ field. We write
〈A| · · · |A〉 instead of〈Ω| · · · |Ω〉 when matrix elements are taken in the presence of an
external field rather than the vacuum. Thus, the propagator in the presence of an external
fieldAµ is written as

GA(x, y) = 〈A|T{φ(y)φ⋆(x)}|A〉. (33.20)

Using operator notation, we use∂µ → −ip̂µ to define

ĜA =
i

(p̂− eA(x̂))2 −m2 + iε
. (33.21)

This equation illustrates an advantage of the quantum mechanics operator formalism over
Feynman diagrams: we can work in position and momentum spaceat the same time,
through operators such asp̂− eA(x̂).

Then, as in Eq. (33.15), we have

GA(x, y) = 〈y|ĜA|x〉 = 〈y| i

(p̂− eA(x̂))2 −m2 + iε
|x〉 =

∫
ds e−sεe−ism2〈y|e−iĤs|x〉,

(33.22)
where now

Ĥ = −(p̂− eA(x̂))2. (33.23)

So we get the same formula as for the free theory, but with a different Hamiltonian. The
interpretation of Eq. (33.22) is thatGA(x, y) describes the evolution ofφ from x to y in
time s, including all possible interactions with a fieldAµ over all possible timess. This is
shown diagrammatically in Eq. (33.8).

For a spinor, we want to evaluate

GA(x, y) = 〈A|T{ψ(y)ψ̄(x)}|A〉. (33.24)

First, recall from Eq. (10.106) that

/D
2
= D2

µ +
e

2
Fµνσ

µν . (33.25)

We used this identity in Chapter 10 to show that Dirac spinorssatisfy the Klein–Gordon
equation with an additional magnetic moment term. Here, theFµνσ

µν term will again
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produce the differences between the scalar and Dirac spinorcases of quantities we
calculated. Then, in momentum space, we have

(/̂p− e /A(x̂))2 = (p̂− eA(x̂))2 − e

2
Fµν(x̂)σ

µν . (33.26)

This identity lets us write the spinor Green’s function operator as

ĜA =
i

/̂p− e /A(x̂)−m+ iε

=
(
/̂p− e /A(x̂) +m

) i

(p̂− eA(x̂))2 − e
2Fµν(x̂)σµν −m2 + iε

, (33.27)

and so the Dirac propagator is

GA(x, y) = 〈y| i

/̂p− e /A−m+ iε
|x〉 =

∫ ∞

0

ds e−sεe−ism2〈y|(/̂p− e /A(x̂) +m)e−iĤs|x〉
(33.28)

as before, but now with

Ĥ = −(p̂µ − eAµ(x̂))2 +
e

2
Fµν(x̂)σ

µν . (33.29)

Note that there is no Dirac trace here, since the Green’s function is a matrix in spinor space.

33.2.2 Field-dependent expectation values

To connect to effective actions, recall from Section 33.1 that to integrate out a field at tree-
level we set it equal to its equations of motion. Another way to phrase this procedure is that
we set the field equal to a configuration for which the Lagrangian has a minimum. Now,
classically, we can always expect to find the field at the minimum. So the minimum can be
thought of as a classical expectation. The generalization to the quantum theory is to replace
a field by its quantum vacuum expectation value:

φ→ 〈Ω|φ|Ω〉 . (33.30)

The classical and quantum expectation values agree at tree-level, but can be different when
loops or non-perturbative effects are included. We will consider how the vacuum can be
destabilized by quantum effects in Chapter 34. Our focus here is not on the expecta-
tion value in the vacuum, but in the presence of a fixed electromagnetic field. Thus, in
a background field, we can integrate outφ by replacingφ→ 〈A|φ|A〉.

Let us go straight to the fermion case. The Lagrangian is

L = −1

4
F 2
µν + ψ̄(i/∂ −m)ψ − eAµψ̄γ

µψ. (33.31)

We now want to replace this by the effective Lagrangian wherethe current thatAµ cou-
ples to is replaced by its expectation value in the given fixedconfiguration, which we are
denoting asAµ:

Leff = −1

4
F 2
µν − eAµJ

µ
A, (33.32)
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where

Jµ
A ≡ 〈A|ψ̄(x)γµψ(x)|A〉. (33.33)

This is not a vacuum matrix element, but a matrix element in the presence of a given state
|A〉.

Now we can calculateJµ
A using Schwinger proper time. First note thatA = 0 is the

vacuum, soJµ
0 should reduce to the propagatorG(x, y) with x = y when the field is

turned off. Indeed, being explicit about the spin indices

Jµ
0 (x) = 〈Ω|ψ̄α̇(x)γ

µ
α̇αψα(x)|Ω〉 = −Tr

[
〈Ω|ψα(x)ψ̄α̇(x)γ

µ
α̇β |Ω〉

]
≡ −Tr〈x|Ĝγµ|x〉.

(33.34)

The third form is meant to indicate that the trace of the matrix
[
ψψ̄γµ

]
αβ

is being taken.
In the presence of a non-zeroA field, we just have to replace this by the propagator in the
Aµ background:

Jµ
A(x) = −Tr〈x|ĜAγ

µ|x〉, (33.35)

whereĜA is the Green’s function in Eq. (33.27). So,

Jµ
A = −Tr

[∫ ∞

0

ds e−sεe−ism2〈x|γµ(/p− e /A+m)e−iĤs|x〉
]

= −
∫ ∞

0

ds e−sεe−ism2〈x|Tr
[
γµ(/p− e /A)ei((p̂−eA)2− e

2σµνF
µν)s

]
|x〉, (33.36)

where we have used thatTr of an odd number ofγ-matrices is zero. Next, note that the
current is itself a variation:

Jµ
A = − i

2e

∂

∂Aµ

∫ ∞

0

ds

s
e−sεe−ism2

Tr
[
〈x|e−iĤs|x〉

]
. (33.37)

Integrating both sides with respect toAµ and using Eq. (33.32) gives

Leff(x) = −1

4
F 2
µν(x) +

i

2

∫ ∞

0

ds

s
e−sεe−ism2

Tr
[
〈x|e−iĤs|x〉

]
, (33.38)

which is only a function of the background fieldAµ. For a spinor,Ĥ is given in Eq. (33.29).
For a complex scalar, the effective Lagrangian has a similarform:

Leff(x) = −1

4
F 2
µν(x)− i

∫ ∞

0

ds

s
e−sεe−ism2〈x|e−iĤs|x〉, (33.39)

with Ĥ = −(p̂ − eA(x̂))2 as in Eq. (33.23). The scalar case is actually more difficult
to derive than the spinor case using Schwinger’s method because of theA2

µφ
⋆φ term in

the scalar QED Lagrangian. We produce this Lagrangian usingFeynman path integrals in
Eq. (33.52) below.
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33.2.3 Interpretation and cross check

Up to an extra factor of1s , the proper-time integral in Eq. (33.39) looks just like〈x|ĜA|y〉
in Eq. (33.22) withx = y. This is easy to understand: the effective action sums closed
loops, where the particle propagates back to where it started after some proper times.
That is, it is an integral over〈x; 0|x; s〉. In terms of Feynman diagrams, the effective action
includes all diagrams with any number of external photons and one closed fermion loop:

Leff = −1

4
F 2
µν + + + + + · · · .

(33.40)
The physical interpretation of the expectation value〈x|e−iĤs|x〉 = 〈x; 0|x; s〉 in
Eq. (33.38) is therefore that it is the amplitude for a particle to go around a loop in proper
times based on evolution with the Hamiltonian̂H.

Note that the first diagram in Eq. (33.40) does not involve anyphotons at all, thus it
should represent the vacuum energy of the system. This provides a nice consistency check.
SettingA = 0, to get just the first diagram, the effective action becomes (in the complex
scalar case)

Γ[0] = −i
∫
d4x

∫ ∞

0

ds

s
e−sεe−ism2〈x|eip̂2s|x〉. (33.41)

Inserting1 =
∫

d4k
(2π)4

|k〉〈k| we find

Γ[0] = −iV T
∫ ∞

0

ds

s

∫
d4k

(2π)4
exp
[
i(k20 − ~k2 −m2 + iε)s

]
, (33.42)

whereV T is the volume of space-time. It is convenient to remove this factor by writing
Γ[0] = −(V T )Veff with V eff an effective potential energy density, which in this case isjust
a constant.

The integral over proper time is divergent from thes ∼ 0 region, corresponding to where
the loop has zero proper length. However, Schwinger proper time conveniently gives us a
Lorentz-invariant and gauge-invariant way to regulate such divergences: cut off the integral
for s > s0. To evaluateV eff, we Wick rotatek0 → ik0 and can integrate over the imaginary
axis. This gives

V eff = −
∫ ∞

s0

ds

s

∫
d3k

(2π)3

∫
dk0

2π
exp
[
−i(k20 + ~k2 +m2)s

]

= − 1

2
√
π

∫
d3k

(2π)3

∫ ∞

s0

ds

s3/2
exp
[
−(~k2 +m2)s

]
, (33.43)

where we have replaceds→ −is in the second step. Then we find

V eff =

∫
d3k

(2π)3

(
− 1√

πs0
+

√
~k2 +m2 +O(

√
s0)

)
. (33.44)
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The− 1√
πs0

is a divergent constant, corresponding to an extrinsic cutoff-dependent vacuum
energy. This can be removed with a vacuum energy counterterm. The important term is in

the integral over
√
~k2 +m2 = ωk, which counts the ground-state energies of the modes.

It was this sum, not the constant, that led to the Casimir force discussed in Chapter 15.
Note that we getωk instead of12ωk since this is the effective action for a complex scalar

that has twice the energy of a real scalar. For a Dirac fermion, the calculation is identical,
sinceĤ = −p̂2 in both cases whenA = 0. The only difference is that the Dirac trace and
− 1

2 in Eq. (33.38) give a factor of4(− 1
2 ) = −2 compared to the scalar case in Eq. (33.39).

The minus sign is consistent with a fermion loop and the factor of 2 is consistent with a
Dirac spinor having twice the number of degrees of freedom ofa complex scalar. These
are the same results we found in Section 12.5 by computing theenergy density from the
energy-momentum tensor. One consequence is that in a theorywith a Weyl fermion and
a complex scalar of the same mass, such as in theories with supersymmetry, the vacuum
energy is zero.

33.3 Effective actions from Feynman
path integrals

An alternative approach to calculating the effective action is based on the Feynman path
integral. Here we want to integrate over some fields by performing the path integral. For
scalar QED, integrating out the scalar means

∫
DA exp(iΓ[A]) =

∫
DADφDφ⋆ exp

[
i

∫
d4x

(
−1

4
F 2
µν − φ⋆(D2 +m2)φ

)]
.

(33.45)

In this case, since the original action is quadratic inφ, we can evaluate the path integral
exactly. We will ignore theiε in this section for simplicity.

Recall the general formula from Problem 14.1:

∫
Dφ⋆Dφ exp

[
i

∫
d4x(φ⋆Mφ+ JM)

]
= N 1

detM
exp(iJM−1J), (33.46)

whereN is some (infinite) normalization constant. Thus, for the scalar QED Lagrangian
we find
∫

DA exp(iΓ[A]) = N
∫

DA exp

[
i

∫
d4x

(
−1

4
F 2
µν

)]
1

det(−D2 −m2)
. (33.47)

This equation will be satisfied if

exp

[
iΓ[A] + i

∫
d4x

1

4
F 2
µν

]
= N 1

det(−D2 −m2)
. (33.48)
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To make this notation somewhat less opaque, we can turn this mysterious determinant into
a sum by noting that

iΓ[A] + i

∫
d4x

1

4
F 2
µν − lnN = − ln

[
det(−D2 −m2)

]
= −tr

[
ln(−D2 −m2)

]
.

(33.49)

The trace is a sum over eigenvalues, in this case, eigenvalues of − ln
(
−D2 −m2

)
. One

can either evaluate this trace in momentum space, as will be discussed in Chapter 34, or
in position space, as we discuss here. The beautiful thing about a trace is that it is basis
independent. So we can just evaluate the sum on position eigenstates. That is, using the
quantum mechanics notation from Section 33.2 we have

iΓ[A] =

∫
d4x

[
− i

4
F 2
µν − 〈x| ln(−D2 −m2)|x〉

]
+ lnN . (33.50)

To connect to Schwinger proper time, take a derivative with respect tom2 and introduce a
Schwinger parameter. Then,

d

dm2
〈x| ln(−D2 −m2)|x〉 = −〈x| 1

−D2 −m2
|x〉 = i

∫ ∞

0

ds e−ism2〈x|e−iĤs|x〉,
(33.51)

with Ĥ = − (p̂− eA(x̂))
2 as in Eq. (33.23). Integrating overm2 and restoring theiε,

which we have been ignoring in this section, gives

Leff(x) = −1

4
F 2
µν − i

∫ ∞

0

ds

s
e−sεe−ism2〈x|e−iĤs|x〉+ const, (33.52)

where the integration constant andlnN have been combined. Physics is unaffected by
these constants, and indeed we will exploit the fact thatLeff can be shifted by a constant to
remove infinities whenLeff is renormalized.

33.3.1 Fermions

For fermions, we need to evaluate
∫

DψDψ̄ exp

(
i

∫
d4x ψ̄

(
i /D −m

)
ψ

)
= N det(i /D −m). (33.53)

Thus,

iΓ[A] = i

∫
d4x

(
−1

4
F 2
µν

)
+Tr

[
tr(ln(i /D −m))

]
+ const, (33.54)

whereTr indicates a Dirac trace andtr is the normal integral overxµ or pµ. The effective
Lagrangian is then

Leff(x) = −1

4
F 2
µν − iTr

[
〈x| ln

(
i /D −m

)
|x
〉]

+ const. (33.55)
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As before, we take a derivative with respect tom2:

d

dm2
Leff(x) =

i

2m
Tr〈x| i /D +m

− /D
2 −m2

|x〉 = i

2
Tr

[
〈x| 1

− /D
2 −m2

|x〉
]

=
1

2

∫ ∞

0

ds e−ism2

Tr
[
〈x|e−i /D2s|x〉

]
, (33.56)

where we have used in the second step that the trace of an odd number ofγ-matrices is 0.
Integrating overm2 gives

Leff(x) = −1

4
F 2
µν +

i

2

∫ ∞

0

ds

s
e−ism2

Tr
[
〈x|e−i /D2s|x〉

]
+ const. (33.57)

Using Eq. (33.25), we then get

Leff(x) = −1

4
F 2
µν +

i

2

∫ ∞

0

ds

s
e−ism2

Tr
[
〈x|ei[(p̂−eA(x̂))2− e

2Fµνσ
µν ]s|x〉

]
+ const,

(33.58)
which agrees with Eq. (33.38).

Another way to obtain this result is to observe that

Tr〈x| ln
(
i /D −m

)
|x〉 = Tr〈x| ln(−i /D −m) |x〉 . (33.59)

So averaging the two gives

Tr〈x| ln(i /D − m) |x〉 = 1

2
Tr〈x| ln(− /D

2 − m2
)
|x〉. (33.60)

We can write this in terms of Schwinger parameters using the identity
∫ ∞

s0

ds

s
eisA = − ln(A)− ln s0 + finite, (33.61)

which holds ass0 → 0. This lets us write Eq. (33.54) with Eq. (33.60) as Eq. (33.58).

33.4 Euler–Heisenberg Lagrangian

Now we are ready to do some physics! We will calculate the effective action for the case of
a constant background electromagnetic fieldFµν (which is not the same as constantAµ).

From Eq. (33.38) we need to evaluate〈x|e−iĤs|x〉, whereĤ = −(p̂−eA(x̂))2+ 1
2σµνF

µν

in the spinor case and̂H = − (p̂− eA(x̂))
2 for scalars. There are a number of ways to

evaluate this trace. The quickest way is to work in basis|ψn〉 of eigenstates of̂H. Then we
can use

∫
d4x〈x|e−iĤs|x〉 =

∫
d4x

∑

n

〈x|ψn〉〈ψn|e−iĤs|x〉

=

∫
d4x

∑

n

|ψn(x)|2 e−iEns. (33.62)
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Thus, we just have to sume−iEns over all the eigenvaluesEn of Ĥ. In this way, we
reduce the problem to non-relativistic quantum mechanics.An alternative, somewhat more
general, approach is discussed in Appendix 33.A.

We are interested in constantFµν . For a constant magnetic field in thêz direction, we
can takeAy = Bx̂ and so the Hamiltonian becomes

Ĥ =
[
−p̂2t + p̂2x + p̂2z + (p̂y − eBx̂)

2
]
× 14×4 − eB

(
σz 0

0 σz

)
, (33.63)

with the eBσz term being the spin–magnetic moment interaction coming from σµνF
µν .

Ĥ has eigenstates for any values ofpt, py andpz. Writing

ψpt,py,pz
n = χn

(
x− py

eB

)
eiptt−ipyy−ipzz (33.64)

reduces the problem to finding the eigenstates ofp̂2x + (eBx̂)
2, which is just the non-

relativistic harmonic oscillator Hamiltonian. The resultis that χn are the harmonic
oscillator wavefunctions andn takes discrete values, corresponding to theLandau levels
of a non-relativistic electron in a magnetic field. The energies are therefore

Ept,py,pz,λ
n = −p2t + p2z + eB(2n+ 1)− 2eBλ, (33.65)

whereλ = ± 1
2 comes from spin being up or down in thez direction.

From Eq. (33.62), we then get

∫
d4x〈x|e−iĤs|x〉 = 2

∫
d4x

dptdpydpz
(2π)3

∞∑

n=0

∑

λ=± 1
2

∣∣∣χn(x− py
eB

)
∣∣∣
2

× ei(p
2
t−p2

z)se−ies(2n+1)Be2ieBλs, (33.66)

where the 2 comes from̂H being block diagonal. To evaluate these sums and integrals,we
put the system in a Euclidean box of sizeL. Then thedt, dy, anddz integrals give a factor
of L3. Thedx integral just gives 1, since the wavefunctions are normalized. Because the
wavefunctions depend onx − py

eB , unlesspy < LeB, the wavefunctions will shift out of
the box; so thepy integral gives a factor ofeBL. We then have

∫
d4x〈x|e−iĤs|x〉 = 2

∑

λ=± 1
2

e2iseBλ eBL
4

(2π)3

∫ ∞

−∞
dpzdpte

i(p2
t−p2

z)s
∞∑

n=0

e−ies(2n+1)B

= −2iL4 eB

8π2

1

s

cos(esB)

sin(esB)
. (33.67)

This has no position dependence, sinceB is constant. It corresponds to an effective
Lagrangian as in Eq. (33.38) of the form

LEH = −1

4
F 2
µν +

eB

8π2

∫ ∞

0

ds

s
e−sεe−ism2 1

s

cos(esB)

sin(esB)
. (33.68)
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The calculation for a constant electric field is the same, butwith ~B → i ~E. The general
Lorentz-invariant expression for the effective Lagrangian for any constantFµν can be
written as

LEH = −1

4
F 2
µν +

e2

32π2

∫ ∞

0

ds

s
e−sεe−ism2 Re cos(esX)

Im cos(esX)
Fµν F̃µν , (33.69)

whereX is a scalar function of the electric and magnetic fields defined by

X ≡
√

1

2
F 2
µν − i

2
Fµν F̃µν =

√
( ~B + i ~E)2, (33.70)

with F̃µν = 1
2ε

µναβFαβ . You are encouraged to check the constant~E and general
expression in Problem 33.1. Takings→ −is we find

LEH = −1

4
F 2
µν +

e2

32π2

∫ ∞

0

ds

s
eisεe−sm2 Re cosh(esX)

Im cosh(esX)
Fµν F̃µν . (33.71)

In this form, the Lagrangian is more obviously real (except possibly near singularities as
discussed in Section 33.4.3).

Finally, the Lagrangian should be renormalized. We use minimal subtraction. Expanding
the integrand perturbatively ine, we find

Re cosh(esX)

Im cosh(esX)
Fµν F̃µν = − 4

e2s2
− 2

3
F 2
µν +

e2s2

45

[
(F 2

µν)
2 +

7

4
(Fµν F̃µν)

2

]
+ · · · .

(33.72)
The leading two terms result in a UV divergence from the smallproper-time region of the
ds integral. These divergences can be regulated in a Lorentz-invariant and gauge-invariant
way by simply cutting offs > s0. The required counterterms are a constant and a renormal-
ization of the leadingF 2

µν term. Thus, we remove the infinities with minimal subtraction,
giving

LEH = −1

4
F 2
µν+

e2

32π2

∫ ∞

0

ds

s
eisεe−sm2

[
Re cosh(esX)

Im cosh(esX)
Fµν F̃µν +

4

e2s2
+

2

3
F 2
µν

]
.

(33.73)

This is theEuler–Heisenberg Lagrangian. It is the renormalized effective action aris-
ing from integrating out a massive fermion for constantFµν . It is worth emphasizing that
this effective Lagrangian is non-perturbative ine. It encodes an infinite number of 1-loop
diagrams, as in Eq. (33.40), and a tremendous amount of physics. We will go through a
number of applications below.

In Appendix 33.A, we derive this Lagrangian more slowly, using Schwinger’s original
method. The basic idea is to calculate〈y|e−iĤs|x〉 = 〈y; 0|x; s〉 by solving the differential
equation

i∂s〈y; 0|x; s〉 = i∂s 〈y; 0|e−iĤs|x; 0〉 = 〈y; 0|Ĥ |x; s〉. (33.74)

The Heisenberg equations of motiondds x̂
µ = i [Ĥ, x̂µ] and d

ds p̂
µ = i [Ĥ, p̂µ] are used to

get an explicit form for̂xµ(s) and p̂µ(s) and thereforeĤ(s). This method of calculation
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produces the full Green’s functionG(x, y) = 〈y; 0|x; s〉 , which is more generally useful
than the effective action alone. Forx = y, which is relevant for the effective action, the
differential equation reduces to (cf. Eq. (33.A.150)):

i∂s〈x; 0|x; s〉 = −tr

[
i

2
eF coth(esF) +

e

2
σF

]
〈x; 0|x; s〉 , (33.75)

whereF = Fµν andσ = σµν are matrices. The solution with appropriate boundary
conditions is

〈x; 0|x; s〉 = −i
16π2

1

s2
exp

(
−1

2
tr ln

[
sinh esF

esF

]
− i

es

2
σµνF

µν

)

= −i e2

64π2

Fµν F̃µν

Im cos(esX)
exp
(
−ies

2
σµνF

µν
)
. (33.76)

Again, this can be checked by differentiation. For a constant magnetic field, this is
equivalent to Eq. (33.67).

The Euler–Heisenberg Lagrangian was first calculated by Heisenberg and his student
Hans Euler by finding exact solutions to the Dirac equation ina constantFµν background
[Euler and Heisenberg, 1936]. Our derivation of it, particularly the one in Appendix 33.A,
is due to Schwinger [Schwinger, 1951].

33.4.1 Vacuum polarization

Expanding the unrenormalized Euler–Heisenberg Lagrangian, as in Eq. (33.72), we found
two divergent terms which were removed with counterterms inEq. (33.73). If we do not
include these counterterms, the expansion gives

LEH = −1

4
F 2
µν − e2

8π2

∫ ∞

0

ds

s
eisεe−sm2

[
1

e2s2
+

1

6
F 2
µν

]
+ finite. (33.77)

The first term in brackets is constant. It gives the vacuum energy density, as discussed in
Section 33.2.3. The second term looks just like the tree-level QED kinetic term,− 1

4F
2
µν .

Keeping only this term (before renormalization), we have

LEH = −1

4
F 2
µν − 1

6
F 2
µν

e2

8π2

∫ ∞

0

ds

s
eisεe−sm2

. (33.78)

This is UV divergent, from thes ∼ 0 region. Regulating with a Lorentz-invariant UV
cutoff s0, we find

LEH = −1

4
F 2
µν

(
1 +

e2

12π2

∫ ∞

s0

ds

s
eisεe−sm2

)

= −1

4
F 2
µν

(
1− e2

12π2
ln
(
s0m

2
)
+ const

)
. (33.79)

This logarithmic dependence on the cutoff is exactly what wefound from computing the
full vacuum polarization graph in QED. As discussed in Chapter 23, UV divergences deter-
mine RGEs, and this one determines the leading orderβ-function coefficient. We can read
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off from the coefficient of the logarithm in Eq. (33.79) (as discussed in Chapter 23), that
theβ-function in QED at 1-loop is

β(e) =
e3

12π2
, (33.80)

which agrees with Eq. (16.73) (or Eq. (23.29)).

33.4.2 Light-by-light scattering

The original motivation of Heisenberg and Euler was to calculate the rate for photons to
scatter off other photons. This problem was suggested to them by Otto Halpern and is
sometimes called Halpern scattering. The relevant Feynmandiagram is

iM =

p3

p1

p2

p4

. (33.81)

This is a difficult loop to compute directly, even with today’s technology, much less with
what Euler and Heisenberg knew in 1936. We can get the answer (in the limit of low-
frequency lightω ≪ m) directly from the Euler–Heisenberg Lagrangian. The relevant

term is the one to fourth order ine, which has the formα2

90
1

m4

[
(F 2)2 + 7

4 (FF̃ )
2
]
. This

term was computed first in a paper by Euler and Kockel [Euler and Kockel, 1935]. Using
it for light-by-light scattering corresponds to a tree-level Feynman diagram of the form

iM =

p3

p1

p2

p4
. (33.82)

Note that our effective Lagrangian is only valid when∂µFαβ = 0; thus we will only get

the result to leading order inp
2

m2 . From the experimental point of view, this is enough, since
light-by-light scattering of real on-shell photons has notyet been experimentally observed,
at any frequency.

The matrix element is

M =
α2

90

1

m4

{
(p1µǫ

1
ν − p1νǫ

1
µ)(p

2
µǫ

2
ν − p2νǫ

2
µ)(p

3
αǫ

3⋆
β − p3βǫ

3⋆
α )(p4αǫ

4⋆
β − p4βǫ

4⋆
α )

+
7

16

[
εµναβ(p1µǫ

1
ν − p1νǫ

1
µ)(p

2
αǫ

2
β − p2βǫ

2
α)
]
×
[
εµναβ(p3µǫ

3⋆
ν − p3νǫ

3⋆
µ )(p4αǫ

4⋆
β − p4βǫ

4⋆
α )
]

+permutations
}
.

(33.83)
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Summing over final polarizations and averaging over initialpolarizations, the result is

1

4

∑

pols.

M2 =
1

4

α4

902
1

m8
2224(s2t2 + s2u2 + t2u2), (33.84)

which leads to a cross section

σ tot =
973

10125π
α4 ω

6

m8
. (33.85)

This is the correct low-energy limit of the exact light-by-light scattering diagram. The exact
result from the 1-loop graphs can be found in [Berestetskyet al., 1982].

33.4.3 Schwinger pair production

Notice that the effective Lagrangian in Eq. (33.73) has singularities for certain values of
the electromagnetic field. To see where the singularities are, we first consider the case with
~B and ~E parallel. Then,

F 2
µν = 2( ~B2 − ~E2) = 2

(
B2 − E2

)
, (33.86)

whereE = | ~E| andB = | ~B|, and

Fµν F̃µν = −4 ~E · ~B = −4EB, (33.87)

and then, from Eq. (33.70),

X2 =
1

2
(F 2

µν − iFµν F̃µν) = (B + iE)2. (33.88)

Then the Euler–Heisenberg Lagrangian in Eq. (33.73) simplifies to

LEH =
1

2

(
E2 −B2

)

− e2

8π2

∫ ∞

0

ds

s
eiεse−m2s

[
EB cot(esE) coth(esB)− 1

e2s2
− B2 − E2

3

]
.

(33.89)

Sincecoth(x) has no poles forx > 0, the singularities are all associated with constant
electric fields. Thus, we take the limitB → 0, in which case the fact that we took~E and
~B parallel is immaterial. From Eq. (33.89) we find

LEH =
1

2
E2 − 1

8π2

∫ ∞

0

ds

s3
eiεse−sm2

[
eEs cot(eEs)− 1 +

1

3
(esE)2

]
. (33.90)

In this form, we can see that the Euler–Heisenberg Lagrangian has poles for realE when
s is equal tosn = nπ

eE for n = 1, 2, . . . As we will now see, these poles indicate that
strong electric fields can create electron–positron pairs,a process known asSchwinger
pair production (although it was predicted first by Euler and Heisenberg).

How can electrons and positrons be produced from the Euler–Heisenberg Lagrangian,
which has no electron field in it? They cannot. However, in a unitary quantum field theory,
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forward scattering rates are related to the sum over real production rates via the optical
theorem. Recall from Section 24.1 that by the optical theorem (see Eq. (24.11))

ImM(A→ A) =
1

2

∑

X

dΠX
LIPS|M(A→ X)|2. (33.91)

We can apply this theorem to QED in the situation where|A〉 corresponds to a coherent
collection of photons describing a large electric field. In QED, the sum over states|X〉
includes states with on-shell electrons and positrons. Since QED is unitary, the optical
theorem holds. In the Euler–Heisenberg Lagrangian the states |A〉 are the same states as
in QED. Thus, if the calculation ofLEH has been done correctly, the left-hand side of
Eq. (33.91) should be unchanged, as one would expect from a matching calculation. The
right-hand side of Eq. (33.91), on the other hand, cannot be the same as in full QED, since
QED has electrons in it and the Euler–Heisenberg theory doesnot. Thus, what would be a
unitary process in full QED now appears as a non-unitary process in the effective theory.
Unfortunately, it is not easy to use Eq. (33.91) to calculatethe pair-production rate, since
one would have to sum over an infinite number of multi-particle states.

There is a nice shortcut, due to Schwinger, for evaluating the total pair-production rate.
If there were no pair production, then the electric field state |A〉 would be constant in time.
Thus〈A|S|A〉 = 1 whereS is theS-matrix. Since in this case the action is constant,S =

eiΓ. Therefore,|〈A| eiΓ |A〉|2 =
∣∣eiΓ

∣∣2 measures the probability for something other than

A to be produced. In other words,
∣∣eiΓ

∣∣2 gives the probability that no pairs are produced
over the timeT and volumeV of the experiment. We then have

∣∣eiΓ
∣∣2 = eiΓe−iΓ⋆

= ei(Γ−Γ⋆) = e−2Im[Γ] = e−2V T ImLEH, (33.92)

where in the last step we use that, for given background fields, the Euler–Heisenberg
Lagrangian is just a number. Thus2ImLEH is the probability, per unit time and volume,
that any number of pairs are created. This is the continuum field version of the optical
theorem relationImM(A → A) = mAΓ tot, whereΓ tot is the total decay rate of a single
particle of massmA.

In order to calculateImLEH we note that the integrand in Eq. (33.71) has poles at
sn = π

eEn. There is no pole ats = 0, as can be seen from expanding the integrand at
smalls. The imaginary part of this expression can be calculated using contour integration
(Problem 33.3). The result is that2

2Im(Leff) =
1

4π

∞∑

n=1

1

s2n
e−m2sn =

αE2

π2

∞∑

n=1

1

n2
exp

(−nπm2

eE

)
. (33.93)

Performing this sum, we find

Γ
(
E → e+e− pairs

)
=
αE2

π2
Li2
(
e−

πm2

eE

)
, (33.94)

with Li2(x) the dilogarithm function. This is the rate for Schwinger pair production in an
external electric field.

2 This sum also has an interpretation as a sum over instantons (see for example [Kim and Page, 2002]).
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The rate for pair production is negligible untilE & E critical =
m2

e

e ≈ 1018 volts/meter,
which is an enormous field. As of this writing, Schwinger pairproduction in QED has still
not been observed, since it is extremely difficult to get suchfields in the lab. One might
imagine, however, that such strong fields might be produced close to a particle with a very
large charge, such as an atomic nucleus. The field around a nucleus isE ∼ e

4πr2Z. Now,
the Euler–Heisenberg Lagrangian is only valid for fields that have wavelengths greater
than 1

me
, so the best we can say is that pair production would begin forZ large enough that

E critical ∼ e

4π(m−2
e )

Z, which givesZ = 4π2

e2 = 1
α ∼ 137. This result is sometimes invoked

to explain why the periodic table has less than 137 elements!3

33.4.4 Connection to perturbation theory

It is informative to consider which of the predictions we have derived fromLEH are
equivalent to perturbative calculations in QED, and which are not.

We found that the Schwinger pair-production rate depended on exp(−πm2

eE ). This depen-
dence one indicates that pair production is a non-perturbative effect – you would never see
pair production from constant electric fields at any fixed order in perturbative QED. Of
course, you can get pair production in perturbation theory.But this would involve pho-
ton modes of frequencies larger thanm. More precisely, one can show that [Itzykson and
Zuber, 1980]

Γ(E → e+e−) =
α

3

∫
d4qθ(q2 − 4m2)

[
~E(q2)

]2
√

1− 4m2

q2

(
1 +

2m2

q2

)
, (33.95)

which vanishes when~E is constant. The Schwinger pair-production rate is one of the
very few analytic non-perturbative calculations in quantum field theory that give physical
predictions.

Other results, such as the rate for light-by-light scattering, could be calculated in per-
turbative QED. Nevertheless, the Euler–Heisenberg Lagrangian efficiently encodes the
result of many loop calculations all at once. It is worth discussing exactly what graphs
are included in the Euler–Heisenberg Lagrangian, since this understanding will apply to
similar effective actions in other contexts.

Recall our expression for the effective Lagrangian where the fermion is integrated out,
Eq. (33.38),

Leff [A] = −1

4
F 2
µν +

i

2

∫
ds

s
e−ism2〈x|e−i /D2s|x〉. (33.96)

We have not assumedFµν is constant at this point, and in fact this effective action isexact.
That is, since the Lagrangian was quadratic inψ, this is a formal expression for the result
of evaluating the path integral ofψ completely. It does, however, correspond to only 1-loop

3 This result actually follows more simply from dimensional analysis. The ground state of a hydrogen-like atom
has energyE0 ∼ −Z2α2me. To get pair production, a nucleus has to be able to capture anelectron from the
vacuum, emitting a positron into the continuum, soE0 . −me giving Z & 1

α
, up to order 1 factors, which

we cannot get by dimensional analysis.
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graphs, those in Eq. (33.40), since there is only a single propagator going fromx back tox
in proper times. But how can this expression be exact if it does not include higher loops?
Are graphs such as

or (33.97)

which have internal photon and/or fermion loops, included or not?
To answer this question, first recall that in the calculationof the effective action, and in

the formal exact expression Eq. (33.38), the photon propagator plays no role. In fact, if we
dropped the photon kinetic term from the original action, the only change in the effective
action would be that the− 1

4F
2
µν term would be missing. Thus, neither of the graphs above

are included in the effective action calculation, since both involve the photon propagator.
On the other hand, since nothing is thrown out (assuming the effective actionΓ[A] is known
exactly), any physical effect associated with these graphsmust be reproducible within the
effective theory. For example, these graphs in full QED contribute to the QEDβ-function,
which has physical effects. The way the effective theory reproduces the physics of these
loops is with its own loops involving effective vertices. Basically, the fermion loops are
computed first, treating the photon lines as external, whichgenerates new vertices. Then
the photon lines coming off these vertices are sewn togetherin a loop amplitude using the
photon propagator in the effective theory.

For example, to reproduce the physics of the first graph in Eq.(33.97), the relevant
effective vertex can be determined by cutting through the intermediate photon and then
contracting the fermion loop to a point:

−→ . (33.98)

The second graph in Eq. (33.97) involves this vertex, associated with the inner fermion
loop, and a 6-point vertex associated with the outer fermionloop. The physics of the
diagrams in Eq. (33.97) are then reproduced by connecting the legs in these effective
vertices:

and . (33.99)

These graphs would reproduce the complete result from the graphs in Eq. (33.97), but we
need the fullLeff[A] to compute them.
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In the Euler–Heisenberg Lagrangian, we tookFµν constant. Thus, the full physics of the
loops in Eq. (33.97) is not reproduced by the Euler–Heisenberg Lagrangian alone. Only if
we had the full effective Lagrangian, by evaluatingΓ[A] exactly, which would supplement
the Euler–Heisenberg Lagrangian with additional terms depending on∂µFαβ (and give
corrections at higher order inα to the terms without derivatives), would the full theory be
reproduced. This exactΓ[A] is not known.

Even at energies aboveme, the exact effective Lagrangian can be used. The electron
still shows up as a pole in the scattering amplitude, as is clear already from Schwinger
pair production in the constantFµν approximation. Thus, one can treat the electron like a
bound state and calculateS-matrix elements for it. Of course, this is a terribly inefficient
way to calculate electron production and scattering, sincewe already know the full theory.
It is more efficient to use the UV completion ofΓ, namely QED, which has a Lagrangian
that is local and real.

33.5 Coupling to other currents

The effective action from integrating outψ can be generalized to the case whereψ couples
to other things besidesAµ. In this way, we can calculate things such as theπ0 → γγ rate,
whereπ0 is the neutral pion from QCD (see Chapter 28).

Whenψ couples to things other thanAµ, the effective Lagrangian has more terms. Say
we had

L = ψ̄(i/∂ −m)ψ− 1

2
φ(�+m2

φ)φ−
1

2
π(�+m2

π)π− eAµψ̄γ
µψ+ λφψ̄ψ+ igπψ̄γ5ψ,

(33.100)
which has a scalarφ and a pseudoscalarπ in addition to the external fieldAµ. When we
integrate outψ, the effective Lagrangian (withoutψ) will just contain the other fields cou-
pled to the expectation value of the variousψ bilinears in the background electromagnetic
field, as in Section 33.2.2. That is,

Leff [A, φ, π] = −1

2
φ(�+m2

φ)φ−
1

2
π(�+m2

π)π− eAµJ
µ
A+λφJφ+ igπJπ, (33.101)

where

Jµ
A = 〈A|ψ̄γµψ|A〉, Jφ = 〈A|ψ̄ψ|A〉, Jπ = 〈A|ψ̄γ5ψ|A〉. (33.102)

We sometimes call these field-dependent expectation valuesclassical currents, since they
are just classical functionals of backgroundAµ(x) fields. The calculation of these classical
currents corresponds to the evaluation of Feynman diagramssuch as

Jφ = + + + + · · · . (33.103)
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Here, the⊗ refers to insertions of the external current in the originaltheory, corresponding
to an interaction with the scalar. The photon lines are the background electromagnetic
fields.

For the scalar current,

Jφ = 〈A|ψ̄(x)ψ(x)|A〉 = −Tr
[
〈x|ĜA|x〉

]

= −Tr

[∫ ∞

0

ds e−ism2〈x|(/̂p− e /A+m)ei(/̂p−e /A)2s|x〉
]

= −4m

∫ ∞

0

ds e−ism2〈x|e−iĤs|x〉. (33.104)

You may notice thatJφ = − ∂
∂mLeff [A], with Leff [A] in Eq. (33.38), a result that is useful

and not surprising, since theφψ̄ψ interaction and the mass termmψ̄ψ have the same form.
For the pseudoscalar current,

Jπ = 〈A|ψ̄(x)γ5ψ(x)|A〉 = −Tr
[
〈x|ĜAγ

5|x〉
]

= −Tr

[∫ ∞

0

ds e−ism2〈x|(/p− e /A+m)ei(/p−e /A)2sγ5|x〉
]

= −m
∫ ∞

0

ds e−ism2

Tr
[
〈x|γ5e−iĤs|x〉

]
. (33.105)

This current does not have a simple relation toLeff [A], but as we will see, is not hard to
compute.

33.5.1 Currents at low energy

Since the scalar current isJφ = − ∂
∂mLeff [A], for the case of constant electromagnetic

fields, we can read the answer from the Euler–Heisenberg Lagrangian, although additional
counterterms may be required. We find (hiding the counterterms)

Jφ = − e2

32π2

∂

∂m

∫ ∞

0

ds

s
e−m2sRe cosh(esX)

Im cosh(esX)
Fµν F̃µν

=
e2

8π2

∂

∂m

∫ ∞

0

ds

s
e−m2s

[
1

e2s2
+

1

6
F 2
µν + · · ·

]

= − e2

4π2
m

∫ ∞

0

dse−m2s

[
1

e2s2
+

1

6
F 2
µν + · · ·

]
. (33.106)

The first term is infinite and can be removed with a renormalization of the bare termΛ3φ

in the Lagrangian. The second term is finite and gives

Jφ = − α

6π

1

m

(
F 2
µν + · · ·

)
, (33.107)

where the· · · are higher order ine.
For the pseudoscalar, we need

Jπ = −m
∫ ∞

0

ds e−ism2

Tr[γ5〈x|e−iĤs|x〉]. (33.108)
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Now, from Eq. (33.76),

〈x|e−iĤs|x〉 = 〈x; 0|x; s〉 = −i e2

64π2

Fµν F̃µν

Im cos(esX)
exp
(
−ies

2
σµνF

µν
)
. (33.109)

and so

Jπ =
ie2m

64π2

∫ ∞

0

ds e−ism2 Fµν F̃µν

Im cos(esX)
Tr[γ5e

−i e
2σµνF

µνs]. (33.110)

SinceTr[γ5] = Tr[σµνγ5] = 0, only terms withσµν to an even power will survive. Using
(σµνF

µν)2 = 2F 2
µν + 2iγ5F

µν F̃µν we get

Tr[γ5e
−i e

2σµνF
µνs] = −4iIm cos(esX). (33.111)

And thus,

Jπ =
e2m

16π2

∫ ∞

0

ds e−ism2

Fµν F̃µν = −i α

4πm
Fµν F̃µν . (33.112)

PluggingJφ andJπ and the Euler–Heisenberg Lagrangian into Eq. (33.101) gives

Leff [A, φ, π] = LEH[A]−
1

2
φ(�+m2

φ)φ+
λ

m
φ
(
− α

6π
F 2
µν + · · ·

)

− 1

2
π(�+m2

π)π +
α

4π

g

m
πFµν F̃µν . (33.113)

Note that theπ coupling has just one term. The decay rates predicted from this effective
Lagrangian are

Γ(φ→ γγ) =
α2

144π3
λ2
m3

φ

m2
, (33.114)

Γ(π → γγ) =
α2

64π3
g2
m3

π

m2
. (33.115)

Not surprisingly, the pseudoscalar rate agrees exactly with Eq. (30.11). In this method of
calculation, however, we gain additional insight into the associated anomaly.

33.5.2 Chiral anomaly

Connecting theπ → γγ rate to an anomalous symmetry is straightforward in the effective
action language. Recall that the QED Lagrangian,

L = ψ̄
(
i/∂ − e /A

)
ψ −mψ̄ψ, (33.116)

is invariant under a vector symmetry,ψ → eiαψ, and, in the limitm → 0, under a chiral
symmetry,ψ → eiγ5ψ. The associated Noether currents areJµ = ψ̄γµψ andJµ5 =

ψ̄γµγ5ψ. By the equations of motion, the axial current satisfies

∂µJ
µ5 = 2imψ̄γ5ψ. (33.117)

So the amount by which the axial current is not conserved is proportional to the fermion
mass.
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Now, we already calculated the expectation value ofψ̄γ5ψ in the background electro-
magnetic field. In Eq. (33.112) we found

〈
A
∣∣ψ̄γ5ψ

∣∣A
〉
= i α

4πmF
µνF̃µν . This is consistent

with Eq. (33.117) only if
〈
A
∣∣∂µJµ5

∣∣A
〉
= − α

2π
FµνF̃µν , (33.118)

which agrees with Eq. (30.22).

33.6 Semi-classical and non-relativistic limits

The Schwinger proper-time method is not only useful for calculating loops using quantum
mechanics, it also gives a new perspective on the semi-classical and non-relativistic limits
of quantum field theory. In particular, it illustrates wherethe particles are hiding in the
path integral. As we will see, Schwinger proper time lets us derive one-particle quantum
mechanics as the low-energy limit of quantum field theory.

To begin, we return to the expression for the Green’s function we derived above for a
scalar particle in a background electromagnetic field, Eq. (33.22):

GA(x, y) = 〈A|T{φ(x)φ(y)}|A〉 =
∫ ∞

0

ds e−ism2〈y|e−iĤs|x〉, (33.119)

with Ĥ = −(p̂ − eA(x̂))2. This operatorĤ is the Hamiltonian in a one-particle quantum
mechanical system that generates translations in Schwinger proper times. The func-
tion GA(x, y) is computed for constant electromagnetic fields in Appendix33.A. In this
section, we rewriteGA(x, y) in terms of a quantum mechanical path integral.

In quantum mechanics, the path integral gives the amplitudefor a particle to propagate
from xµ to yµ in times (see Section 14.2.2):

〈y|e−iĤs|x〉 =
∫ z(s)=y

z(0)=x

Dz(τ) exp(i
∫
dτ L(z, ż)), (33.120)

whereL = p̂ ˙̂x− Ĥ is the Legendre transform of the Hamiltonian. We would like to work
out this Lagrangian in the case of a scalar in an electromagnetic field.

To simplify things, we first writeĤ = −Π̂2, whereΠ̂µ = p̂µ−eAµ(x̂). The Heisenberg
equations of motion for translation ins are

˙̂xµ ≡ dx̂µ

ds
= i[Ĥ, x̂µ] = i[−Π̂2, x̂µ] = 2Π̂µ, (33.121)

where[Π̂µ, x̂ν ] = [p̂µ, x̂ν ] = igµν has been used in the last step. So,

L = p̂µ
∂Ĥ

∂pµ
− Ĥ = −Π̂2 − 2eAµΠµ = −

(
dx̂µ

2ds

)2
− eAµ dx̂

µ

ds
, (33.122)

giving

〈y|e−iĤs|x〉 =
∫ z(s)=y

z(0)=x

Dz(τ) exp
(
−i
∫ s

0

dτ

(
dzµ

2dτ

)2

− ie

∫
Aµ(z)dz

µ

)
, (33.123)



726 Effective actions and Schwinger proper time

with the integral overAµ a line integral along the pathz(s). So the Green’s function is

GA(x, y) =

∫ ∞

0

ds e−ism2

∫ z(s)=y

z(0)=x

Dz(τ) exp
(
−i
∫ s

0

dτ

(
dzµ

2dτ

)2

− ie

∫
Aµ(z)dz

µ

)
.

(33.124)

This is an exact formal expression, only useful to the extentthat we can solve forz(τ).
This world-line formulation was derived by a different method by Feynman [Feynman,

1950], although it had little application for many years. Interest in this approach was
revived by Polyakov [Polyakov, 1981] in the context of string theory, and by Bern and
Kosower [Bern and Kosower, 1992] who used it to develop an efficient way to compute
loop diagrams in QCD.

33.6.1 Semi-classical limit

In the limit that a particle is very massive, loops involvingthat particle are suppressed.
Thus, it should be possible to treat a massive particle classically and the radiation it
produces quantum mechanically.

To take the large mass limit, we first rescales→ s
m2 andτ → τ

m2 . This gives

GA(x, y) =
1

m2

∫ ∞

0

ds e−is

∫ z( s

m2 )=y

z(0)=x

Dz(τ)

× exp

(
−i
∫ s

0

dτ

[
m2

(
dzµ

2dτ

)2]
− ie

∫
Aµ(z)dz

µ

)
. (33.125)

Now we see that, for largem, them2(dz
µ

2dτ )
2 term completely dominates the path integral.

Moreover, asm → ∞, the action is dominated by the point of stationary phase, which is
also the classical free-particle solution:

zµ(τ) = xµ + vµτ, (33.126)

wherevµ = yµ−xµ

s is the particle’s velocity. So we get, rescalings → sm2 back again,
and plugging in the stationary phase solution,

GA(x, y) =

∫ ∞

0

ds exp

(
−i
[
sm2 +

(y − x)2

4s
+ evµ

∫ s

0

dτAµ(z(τ))

])
. (33.127)

The first two terms in the exponent are independent ofe and represent propagation of
a free particle, similar to Eq. (33.11). The next term is equivalent to adding a term to the
LagrangianL = −eAµJ

µ
c , whereJµ

c is the source current from a classical massive particle
moving at constant velocity:

Jµ
c(x) = vµδ(x− vτ). (33.128)

In words, a heavy particle produces a gauge potentialAµ as if it is moving at a constant
velocity.
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This is thesemi-classicallimit. When a particle is heavy, the quantum field theory can
be approximated by treating that particle as a classical source, but treating everything else
quantum mechanically. You can study the fermion case in Problem 33.4.

33.6.2 Non-relativistic limit

In the non-relativistic limit, not only is the particle’s mass assumed to be larger than the
energy of typical photons, but the particle’s velocity is also assumed to be much less than
the speed of light. Define∆t = y0−x0 and∆x = |~y − ~x|. A particle moving slowly from
xµ to yµ has∆t≫ ∆x.

Separating out the time component, the 2-point function in Eq. (33.124) becomes

GA(x, y) =

∫ ∞

0

ds

∫ z(s)=y

z(0)=x

Dz0(τ)D~z(τ)

× exp

(
−i
∫ s

0

dτ

[(
dz0

2dτ

)2
−
(
d~z

2dτ

)2
+m2

]
− ie

∫
Aµ(z)dz

µ

)
.

(33.129)

The classical path that minimizes the action, from the largem limit, has

z0(τ) = x0 +
∆t

s
τ. (33.130)

We want to treat this time evolution classically, and leave the rest of the field fluctuations
quantum mechanical. However, we can see that since both( dz

0

2dτ )
2 andm2 are large, the

stationary phase will have∆t
2s ∼ m and sos ∼ ∆t

2m . That is, the integral is dominated by
the region nearz0 = x0 + 2mτ ands = ∆t

2m . To leading order in the expansion ofs and
z0 around their stationary-phase points, we then find

GA(x, y) =

∫ z( ∆t
2m )=y

z(0)=x

D~z(τ) exp
(
i

∫ ∆t
2m

0

dτ

[(
d~z

2dτ

)2

− 2m2

]
− ie

∫
Aµ(z)dz

µ

)
.

(33.131)

Now we change variables toτ = t
2m to find

GA(x, y) =

∫ z(∆t)=y

z(0)=x

D~z(t) exp
(
i

∫ ∆t

0

dt

[
1

2
m

(
d~z

dt

)2

−m

]
− ie

∫
Aµ(z)dz

µ

)
.

(33.132)

This result is exactly the path integral expression in non-relativistic, first-quantized quan-
tum mechanics with a potentialV = m. We have just derived that the non-relativistic limit
of quantum field theory is quantum mechanics!
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33.A Schwinger’s method

In this appendix, we explicitly calculate the 1-loop effective action for constant background
electromagnetic fieldsFµν using Schwinger’s original method [Schwinger, 1951]. Thisis
an alternative way to calculate the Euler–Heisenberg Lagrangian than the sum over Landau
levels method discussed in Section 33.4. This method, although a bit longer, is appealing
because it avoids having to regulate the system in a box. It also produces a general expres-
sion for the propagatorGA(x, y) of a particle in a constant background electromagnetic
field.

Our starting point is the formula for the effective action inEq. (33.38):

Leff(x) = −1

4
F 2
µν(x) +

i

2

∫ ∞

0

ds

s
e−ism2

Tr
[
〈x|e−iĤs|x〉

]
, (33.A.133)

with Ĥ = −(p̂µ − eAµ(x̂))2 + e
2Fµν(x̂)σ

µν . We have dropped theε term, since we will
not need it with this method. HereAµ(x̂) is to be thought of as a classical gauge field
configuration with position replaced by the operatorx̂. We would like to calculateLeff(x)

whenFµν(x̂) = (∂µAν − ∂νAµ)(x̂) is constant. We begin by calculating〈y|e−iĤs|x〉.
Once this is known, we will sety = x and integrate overs to getLeff .

33.A.1 Proper-time propagation

States such as|x〉 are eigenstates of an operatorx̂µ in a first-quantized Hilbert space. The
operatorsx̂µ are Schr̈odinger-picture operators. They are related to Heisenberg-picture
operators bŷxµ(s) = eiĤsx̂µe−iĤs. Using the definition|x; s〉 ≡ e−iĤs|x〉 we find

i∂s〈y; 0|x; s〉 = i∂s〈y|e−iĤs|x〉 = 〈y|e−iĤsĤ|x〉. (33.A.134)

Now,

〈y|e−iĤsx̂µ(s) = 〈y|x̂µe−iĤs = yµ〈y|e−iĤs, (33.A.135)

and

x̂µ(0)|x; 0〉 = x̂µ|x; 0〉 = xµ|x; 0〉. (33.A.136)

Thus, if we can writeĤ in terms ofx̂(0) and x̂(s) we can turn Eq. (33.A.134) into an
ordinary differential equation whose solution gives〈y; 0|x; s〉.

In quantum mechanics, the position and momentum operators satisfy [x̂, p̂] = i. In our
4D first-quantized setup we generalize this to

[x̂µ(s), p̂ν(s)] = −igµν , (33.A.137)

with the commutation applying at the same proper times. To simplify the form of the
Hamiltonian, we introduce the operator̂Πµ = p̂µ − eAµ(x̂). Then, assumingFµν is
constant, we get

[
x̂µ(s), Π̂ν(s)

]
= −igµν , (33.A.138)
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[Π̂µ(s), Π̂ν(s)] = −ieFµν . (33.A.139)

In terms ofΠ̂µ, the Hamiltonian is

Ĥ(s) = − /̂Π2 = −Π̂µ(s)Π̂
µ(s) +

e

2
Fµνσ

µν . (33.A.140)

For simplicity, we will drop circumflexes on operators from now on. As a notational conve-
nience, we will also replaceµ andν indices with boldface type. So the vectorsxµ andΠµ

are written asx andΠ, respectively, and the matricesFµν andσµν are written asF andσ
respectively. Thentr(σF) = σνµF

µν = −σµνFµν , with tr(· · · ) referring to a trace over
µ andν indices in this context.

In this notation, the evolution ofΠµ(s) generated by the HamiltonianH(s) through the
Heisenberg equations of motion becomes

dΠ

ds
= i[Ĥ,Π] = 2eF ·Π, (33.A.141)

where we have used that sinceF is constant it commutes with all operators, includingΠ.
This equation is solved byΠ(s) = e2esFΠ(0). Similarly,

dx

ds
= i[Ĥ,x] = 2Π, (33.A.142)

which gives

x(s) = x(0) + 2seesF
sinh(esF)

seF
·Π(0). (33.A.143)

This solution is easy to check by differentiating. In the limit A → 0, Π → p and this
becomesx(s) = x(0) + 2sp(0), which is consistent with the eigenstates ofx(s) being
those which evolve into positionxµ after a times.

Thus we have

Π(0) = e−esF eF

2 sinh(esF)
· [x(s)− x(0)] , (33.A.144)

Π(s) = eesF
eF

2 sinh(esF)
· [x(s)− x(0)] . (33.A.145)

The Hamiltonian then becomes

Ĥ = −Π(s) ·Π(s)− e

2
tr(σF) = − [x(s)− x(0)]K[x(s)− x(0)]− e

2
tr(σF),

(33.A.146)
with K ≡ e2F2

4 sinh2(eFs)
. Note thatKµν = Kνµ.

To evaluate〈y|e−iĤsĤ|x〉 in Eq. (33.A.134) usinĝH, it is helpful first to rewriteĤ so
thatx(s) is on the left andx(0) is on the right. This is not hard:

Π(s)·Π(s) = x(s)Kx(s)−2x(s)Kx(0)+x(0)Kx(0)+Kµν [x
µ(s), xν(0)]. (33.A.147)

Now,

Kµν [x
µ(s), xν(0)] = −tr

{
K

[
x(0),x(0) + 2eesF

sinh(esF)

eF
·Π(0)

]}

=
i

2
tr[eF+ eF coth(esF)]. (33.A.148)
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So, sincetr[F] = 0, we have

Ĥ = −x(s)Kx(s) + 2x(s)Kx(0)− x(0)Kx(0)− i

2
tr[eF coth(esF)]− e

2
tr(σF) .

(33.A.149)
In this canonical form,̂H can be evaluated in position eigenstates.

Equation (33.A.134) becomes

i∂s〈y; 0|x; s〉 = −
{
(y − x)

e2F2

4 sinh2(esF)
(y − x)

+
i

2
tr[eF coth(esF)] +

e

2
tr(σF)

}
〈y; 0|x; s〉, (33.A.150)

wherex = xµ andy = yµ are position vectors, not operators anymore. This is just a
differential equation. The general solution is

〈y; 0|x; s〉 = C(x, y) exp

{
i(y − x)

eF

4
coth(esF)(y − x)

−1

2
tr ln

[
sinh(esF)

eF

]
+ i

es

2
tr(σF)

}
(33.A.151)

This can be checked by differentiation and holds for anyC(x, y).
To determineC(x, y), we use the additional information that

(
i
∂

∂x
− eA

)
〈y; 0|x; s〉 = 〈y; 0|e−iĤsΠ(0)|x; s〉

= e−esF eF

2 sinh(esF)
(y − x)〈y; 0|x; s〉, (33.A.152)

and similarly
(
−i ∂
∂y

− eA

)
〈y; 0|x; s〉 = eesF

eF

2 sinh(esF)
(y − x) 〈y; 0|x; s〉 . (33.A.153)

Plugging in our general solution, we find
[
i
∂

∂x
− eA− e

2
F(x− y)

]
C(x, y) = 0, (33.A.154)

and [
−i ∂
∂y

− eA− e

2
F(x− y)

]
C(x, y) = 0. (33.A.155)

The solution is

C(x, y) = C exp

[
ie

∫ y

x

dzµ
(
Aµ(z) +

1

2
Fµν(z

ν − yν)
)]
. (33.A.156)

This line integral is independent of path since the integrand has zero curl. The constantC
can be fixed by demanding that the result reduce to the free theory asA → 0. The final
result is
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〈y; 0|x; s〉 = −i
16π2s2

exp

[
ie

∫ y

x

dzµ
(
Aµ(z) +

1

2
Fµν(z

ν − yν)
)]

× exp

[
i(y − x)

eF

4
coth(esF)(y − x) + i

es

2
tr(σF)− 1

2
tr ln

[
sinh(esF)

esF

]]
,

(33.A.157)

which is manifestly gauge invariant. TakingA→ 0 reproduces Eq. (33.11), which confirms
the normalization.

Equation (33.A.157) is more generally useful than just for the calculation of the Euler–
Heisenberg Lagrangian. The special case whenx = y is quoted in Eq. (33.76) and used
for the calculation of theπ0 → γγ rate in Section 33.5.1.

33.A.2 Effective Lagrangian

Now that we have the proper-time Hamiltonian, we are a small step away from the Euler–
Heisenberg Lagrangian. We need to calculate

LEH(x) = −1

4
F 2
µν(x) +

i

2

∫ ∞

0

ds

s
e−ism2

Tr
{
〈x|e−iĤs|x〉

}

= −1

4
F 2
µν(x)+

1

32π2
Tr

{∫ ∞

0

ds
1

s3
exp

[
−ism2 + i

es

2
tr(σF)− 1

2
tr ln

[
sinh(esF)

esF

]]}
,

(33.A.158)

whereTr is the Dirac trace andtr contractsµ andν as above.
Now, recall from Eq. (30.65) that

[tr(σF)]
2
= −2tr

(
F2
)
− 2iγ5tr(FF̃) = 8(F − iγ5G), (33.A.159)

whereF̃µν ≡ 1
2ε

µναβFαβ and

F ≡ 1

4
F 2
µν =

1

2
( ~B2 − ~E2), (33.A.160)

G ≡ −1

4
FµνF̃µν = ~E · ~B. (33.A.161)

Then, sinceγ5 has eigenvalues±1, the Dirac eigenvalues ofTr(σF) are

λσF

i = ±
√
8(F ± iG), (33.A.162)

with all four sign combinations possible. So,

Tr
[
ei

es
2 tr(σF)

]
= 2 cos

[
es
√
2(F + iG)

]
+ 2 cos

[
es
√

2(F − iG)
]

= 4Re cos[esX] , (33.A.163)

where

X ≡
√

1

2
F 2
µν − i

2
Fµν F̃µν =

√
2 (F + iG) =

√
( ~B + i ~E)2. (33.A.164)
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Next we need
1

2
tr ln

[
sinh(eFs)

esF

]
= ln

√
λ1λ2λ3λ4, (33.A.165)

whereλi are the four eigenvalues ofsinh(eFs)
esF . These eigenvalues are determined from the

eigenvalues of a constantFµν , which are (see Problem 33.5)

λFi = ± i√
2

[√
F + iG ±

√
F − iG

]
, (33.A.166)

with all four possible sign choices. After some simplification the result is

exp

{
−1

2
tr ln

[
sinh(eFs)

esF

]}
= − (es)2G

Im cos(esX)
. (33.A.167)

Putting everything together, we find

LEH(x) = −1

4
F 2
µν +

e2

32π2

∫ ∞

0

ds
1

s
e−im2sRe cos(esX)

Im cos(esX)
FµνF̃µν , (33.A.168)

which is the final answer for the unrenormalized Euler–Heisenberg effective Lagrangian,
in agreement with Eq. (33.71).

Problems

33.1 Complete the calculation of the Euler–Heisenberg Lagrangian using Landau levels
in an arbitraryFµν . Show that for an electric fieldB → iE is justified. Also show
that the result for a general electromagnetic field is given by Eq. (33.71).

33.2 Calculate light-by-light scattering using helicity spinors.
33.3 Calculate the contour integral to derive the pair-production rate Eq. (33.94) from

Eq. (33.93). It is helpful to first expand the integration limits to
∫∞
−∞ ds, then deform

the contour to pick up the poles.
33.4 Repeat the analysis in Section 33.6.1 for a fermion. Show that in the non-relativistic

limit, the spin is irrelevant.
33.5 Show that the eigenvalues ofFµν are given by Eq. (33.A.166).


